Why do a qEEG for Neurotherapy?

There are many in the field of Neurotherapy who do not perform qEEGs prior to designing a clinical intervention. These people are currently practicing well within the standard of practice for this rapidly evolving field. Many within this group have standard protocols which are used on all clients, with various alterations to respond to the client’s reported experiences during the treatment.

I see the field of neurofeedback gradually moving more toward the use of qEEG, but it is not required by any stretch of the imagination, much less a standard of practice. I am sometimes misquoted as having said it is unethical to do neurofeedback without a qEEG. It may be less than optimal, in my estimation, but it is certainly not unethical.

The argument has been raised that the qEEG is only a way to bill the client additional charges, draining the vital cash reserves of the clients, with no scientific evidence of a benefit for the use of the qEEG. I agree there is an expense for a qEEG. To routinely perform a qEEG without a demonstrable treatment benefit would be difficult to justify.

There is an increasing body of evidence that there is a positive treatment impact from the use of a qEEG and the resultant customized NF intervention. The initial information coming from those using the technique “feeling” they got some clinical utility from qEEG data. The more persuasive evidence to date is a retrospective evaluation of outcomes in a single practice.

The retrospective research compared 3 years of NF data using a commonly used standard treatment approach to 2 years using the qEEG based customized intervention. A gross summarizing of the paper shows a doubling of the consevatively estimated clinical success, from 30 to 60%. Further, the total treatment benefit (both ‘some benefit’ and ‘full’ benefit groups added together) increased from the commonly previously reported 80% increased to 90% now receiving perceived benefit (C. Wright et al., SSNR, Austin 1998).

The cost effectiveness is seen easily if there are a few sessions spent “getting it right” using the clinical guesses to select sites. It only takes a few wasted sessions, not to mention possible adverse reactions, to pay for the proper selection using the qEEG.

I believe the strongest argument for the use of qEEG stems from the reported incidence of non-convulsive frontal and temporal lobe epilepsy comorbid with diagnosis of ADD/ADHD. When I saw 10% quoted in the literature, I was shocked and had some doubts about the reliability of the observation. Following nearly 3 years doing the screening for one ADD/ADHD practice, I saw a similar percentage of undiagnosed or “occult epilepsy”. I now have more faith in the figure.

To use a standard ADD/ADHD intervention with an undiagnosed epileptic may be problematic. The lack of awareness being no excuse (read ‘defense’) if legalities are invoked. The qEEG has a clinical EEG read during its evaluation, allowing for the proper referal or diagnosis of epilepsy (or any other occult condition such as tumor, metabolic or toxic encephalopathy or early dementia).

How do the maps tell you where to intervene?

I once heard qEEG referred to as “electro-phrenology”, a term that conjures up images of ancient times and archaic beliefs about brain function. I sort of like the term, as I think the term speaks to the potential to make simplistic assumptions about intervention, based on colored map “hot” spots, the ‘bumps’ of electro-phrenology.

QEEGers without an appropriately sophisticated model of how the brain works will be tempted to stick the intervening electrodes on areas that ‘light up’ with some color in a map. The area is likely to be an artifact, a normal finding, a normal variant or even the proper area for intervention. It may also be an effect of a distant cause or change in brain regulation.

The time consuming study of the brain’s function, EEG and the quantitative analysis techniques, including artifacts is needed to understand the colorful and informative mappings, tables of values and database comparisons. The careful study of the database selected is also needed to understand its strengths and weaknesses (Thatcher, 1998).

One of the earliest NF clinicians to use the qEEG to intervene in the 1970’s was Pourier, a Canadian clinician/researcher. He used the Fourier analysis derived compressed spectral array (CSA) to select the ‘deficient’ bands and those in ‘excess’, setting his protocol to act like a bull dozer, chopping off peaks and filling in valleys. His clinical judgements were based on experience, not database comparisons, but he did report positive results clinically.

Hopefully qEEG based NF has advanced since these early days of simplistic assumptions and electro-phrenology. For now, the study of the digital manipulations of the data needs to be put in place.

Leave a Comment