Current Research Regarding Blast Injuries in Veterans

This current research from the New England Journal of Medicine  – Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel –  shows that Blast Injury is not at all like mild traumatic brain injury, since the mTBI does not involve white matter injuries. The research does show white matter changes during the medical evacuation, done in Germany using Diffusion Tensor Imaging, and also that the white matter changes continue to evolve. They also show that not all symptomatic blast injuries are seen with this technique.

No traditional structural neuroimaging was able to see this damage (like CT or routine MRI). The NY Times recently reported on soldiers injuries evading the M.R.I and CT Scans

The brain areas involved included the orbital surfaces of the frontal lobe and the temporal areas.

These results point to the need for a clinical diagnosis, not a reliance on any given technology to answer the clinical question.

The endocrine changes from supposed pituitary injury, and the presence of micro-emboli due to pressure wave impact on the thorax that are reported in blast injury is not at all dismissible with these findings.

What Happened to the Reporter at the Grammys?

Recently during a post-Grammy interview, the on-air report had some serious difficulties in getting her words out. You can read about it and see the video here .

The reporter in this article likely had a TIA… a Transient Ischemic Attack… the temporary insufficiency of vascular flow dynamics to a cortical area providing insufficient local glucose and oxygen for function. This can happen from just flow dynamics due to vasoconstriction, such as seen in hyperventilation or gross over-arousal. This can also happen when blood consistency is not appropriate to allow flow, such as seen with hyperglycemia in diabetics when their blood sugar rises too high.

You may think “what does this have to do with EEG?”… well it is an important EEG area, and not without controversy.

The mid-temporal sharp-slow transients that are seen in EEG are considered neurologically non-specific, and many neurologists do not even comment on them. This is a mistake, as these nonspecific changes are a harbinger of vascular issues, including ischemia (as seen in migraine ischemia and the current discussion of TIAs), or vascular insufficiency, commonly in the vertebro-basillar artery and posterior vascular distributions supplying the hippo-campus (which has a huge metabolic demand load).

No less than Ernst Neidermayer chastises the neurologists doing EEG interpretations for under-reading of these findings. He clearly shows in his paper that these non-specific findings are important.

Recently I had a client who sent in the EEG of his wife, who had experience some word-finding and fluency issues, and it had these “nonspecific” temporal findings on the left… we suggested an MRA (magnetic resonance angiography), and though they had already done the MRI (which was normal), the MRA was done. The MRA showed a 9 millimeter AV malformation, and surgery was done to patch this area so it didn’t burst, saving her life.

These are the sort of waveform distortions that require an experienced EEG interpretation, and preferably an expert with Board qualification in EEG, not just someone licensed to read EEGs. These controversial findings make all the difference, and it is exactly these areas that provide the large difference between interpretation in studies looking at inter-reader visual EEG reliability.

Jay

New Study Shows – The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency

References and further reading may be available for this article. To view references and further reading you must purchase this article.

Abstract

Attention-deficit/hyperactivity disorder (ADHD) was found to be characterized by a deviant pattern of electrocortical activity during resting state, particularly increased theta and decreased beta activity.

The first objective of the present study is to confirm whether individuals with slow alpha peak frequency contribute to the finding of increased theta activity in ADHD. The second objective is to explore the relation between resting-state brain oscillations and specific cognitive functions. From 49 boys with ADHD and 49 healthy control boys, resting-state EEG during eyes open and eyes closed was recorded, and a variety of cognitive tasks were administered. Theta and beta power and theta/beta ratio were calculated using both fixed frequency bands and individualized frequency bands. As expected, theta/beta ratio, calculated using fixed frequency bands, was significantly higher in ADHD children than control children. However, this group effect was not significant when theta/beta ratio was assessed using individualized frequency bands. No consistent relation was found between resting-state brain oscillations and cognition. The present results suggest that previous findings of increased theta/beta ratio in ADHD may reflect individuals with slow alpha peak frequencies in addition to individuals with true increased theta activity. Therefore, the often reported theta/beta ratio in ADHD can be considered a non-specific measure combining several distinct neurophysiological subgroups such as frontal theta and slowed alpha peak frequencies.

Read more

How EEG can Show an Epileptogenic Process

This is the first of a few posts with a variety of ways the EEG can show an epileptogenic process. The morphology of the underlying process are quite dramatically varied.

The two images below show the referential and sequential montage display of an active right temporal-parietal spike and slow wave focus, seen in a child clinically diagnosed with an attachment disorder. There was no history of convulsion, nor any suspicion of the actual underlying pathophysiological basis for the behavioral presentation.

Read more

Epilepsy and EEG

Epilepsy and EEG have been inextricably linked since the 1930s, when Frederick and Erna Gibbs discovered that epileptic events were visible in the EEG.  The evolution of other medical imaging in the 1970s and 1980s provided a better way to localize tumors, and the clinical use tapered off in areas other than epilepsy and encephalopathies.  Even with the multiplicity of other methods, the EEG remains the gold standard for identification of epilepsy.

In modern neuroscience centers, the EEG is still the tool of choice in evaluation of convulsive epilepsy, as well as some other non-convulsive forms, such as staring episodes seen in “absence epilepsy” typically as a 3/second spike and wave dominant anteriorly, or temporal lobe epilepsy, which is seen as a “notched” slow wave discharge fronto-temporally.

Read more

First Direct Evidence of Neuroplastic Changes Following Brainwave Training

The scientific and academic press is now considering Neurofeedback as one of the ways neural plasticity can be induced/enhanced. The paper below shows the NF training changing the brain’s plasticity measurably within a single feedback session.

This may not surprise too many old-time NF practitioners, except that it is now being proven with well done studies in the traditional neuroscience literature!  Neurofeedback can induce changes in brain plasticity!

Jay

First Direct Evidence of Neuroplastic Changes Following Brainwave Training

ScienceDaily (Mar. 12, 2010) — Significant changes in brain plasticity have been observed following alpha brainwave training.

A pioneering collaboration between two laboratories from the University of London has provided the first evidence of neuroplastic changes occurring directly after natural brainwave training. Researchers from Goldsmiths and the Institute of Neurology have demonstrated that half an hour of voluntary control of brain rhythms is sufficient to induce a lasting shift in cortical excitability and intracortical function.

Remarkably, these after-effects are comparable in magnitude to those observed following interventions with artificial forms of brain stimulation involving magnetic or electrical pulses. The novel finding may have important implications for future non-pharmacological therapies of the brain and calls for a serious re-examination and stronger backing of research on neurofeedback, a technique which may be promising tool to modulate cerebral plasticity in a safe, painless, and natural way.

Continued at http://www.sciencedaily.com/releases/2010/03/100310114936.htm

Three Sets of Data from the Same EEG

This is three sets of data from the same underlying EEG, all with varying coherence results, and with the weighted average showing the alpha hypercoherent pattern with better fidelity than any other for this data.

Read more

Drug exposure and EEG/qEEG findings

A technical guide by Jay Gunkelman, QEEG-D

General comments:

There is a generally reciprocal effect between alpha and beta, as brain stem stimulation desynchronizes the alpha generators, beta is seen.  During states of under-arousal, this relationship is not seen, as when the subject is alerted, when both alpha and beta increase.

The point is that the arousal level changes the EEG responses expected, as when a stimulant is given to an under-aroused subject, increasing alpha. In a normally aroused subject, stimulants decrease alpha, and in an anxious (low voltage fast EEG variant) subject alpha will not be seen as changed by a stimulant.

Though there is a response stereotype for each medication, there are also individual responses, which vary. Mixtures of medications become too complex to evaluate each individual medication’s contribution, not to speak of synergistic effects not seen with any single medication, which may be seen in polytherapy.

The following pages represent a summary of many articles, papers, reviews and books on medications and the CNS function, and finally nearly 30 years of experience in clinical and research EEG. The difficulty in this area is the definitions of bands varies, the methods of analysis range from visual inspection of the raw EEG to quantitative measures, not all of which are clearly defined… and thus the need for a brief summary which puts this into a concise form for reference.

Read more

Concern Regarding the Mitsar Amplifier

The concern regarding the Mitsar amplifier expressed with so much vigor by those with competing interests has met the reality test of actual recorded data.  The concern expressed was over a theoretical time skewing error due to the data sampling of an older version of the Mitsar amplifier.

I suggested at the time that all the emotion was merely an example of someone yelling “the sky is falling”, like Chicken Little. There was no real problem, just lots of crying out and hand wringing.

I requested in an open international forum for anyone to send me a sample of the problem, and none could be produced. I suspected there was no real problem, as the sample issue was concerning a 500 sample/second device having a time skew… though this was in comparison to a database collected on a 100 sample per second device, with the waveforms interpolated from these samples.

Read more

Derived Feedback Metrics such as Z-score Training

As the technologies advance and the software speed starts to allow derived measures to be used for feedback, the field is being offered many new tools for neurofeedback, including ICA based feedback, LORETA based feedback, and Z-score feedback.

All of these new tools will require clinical validation prior to being able to be considered standard techniques within our field’s armamentarium of efficacious techniques and clinical applications. All of these techniques offer great hope at this time with preliminary results, but careful clinical outcome studies remain to be performed.

In this brief note I will discuss Z-score feedback. This promising technique offers to set normative boundaries around the mean of many features of the EEG, and allow feedback to be controlled by these parameters. This obviously offers great hope to clinical outliers, as their Z-score divergence should be related to their pathology. One difficulty is that database Z-scores also show divergence when an adaptive or counter-balancing feature is used to cope with an abnormal finding. A crutch is not a normal finding, but you can’t walk without it if you have a broken leg.

Read more