QEEG-guided Neurofeedback: New Brain-based Individualized Evaluation and Treatment for Autism

by James Neubrander, MD, Michael Linden, PHD, Jay Gunkelman, QEEGd, and Cynthia Kerson, PHD

QEEG-guided neurofeedback is based on normalizing dysregulated brain regions that relate to specific clinical presentation. With ASD, this means that the approach is specific to each individual’s QEEG subtype patterns and presentation. The goal of neurofeedback with ASD is to correct amplitude abnormalities and balance brain functioning, while coherence neurofeedback aims to improve the connectivity and plasticity between brain regions. This tailored approach has implications that should not be underestimated. . . . Clinicians, including the authors, have had amazing results with ASD, including significant speech and communication improvements, calmer and less aggressive behavior, increased attention, better eye contact, and improved socialization. Many of our patients have been able to reduce or eliminate their medications after completion of QEEG-guided neurofeedback.

Read moreQEEG-guided Neurofeedback: New Brain-based Individualized Evaluation and Treatment for Autism

Coherence Models and artifacts – Prior published findings in Autism are artifactual.

The following link to the article “Movement during brain scans may lead to spurious patterns” contains peer reviewed hard evidence of a clear cut case of poor deartifacting and excessively short recording times combining to create artifactual findings… findings that had high reliability within the data set, but which had results which were determined by artifact (movement). Even bad data can be repeatable.

This paper brings into clear question the commonly taught model of short and long distance connectivity which has been taught as a “cortical-cortical connectivity” issue, when many have pointed to the logical fallacy to this theory seen in the International Federation of Clinical Neurophysiology position paper (Basic Mechanisms of Cerebral Rhythmic Activities) on EEG generators, which showed that cutting cortical-cortical connections did not alter coherence (making the theory false).

I have presented this to the people in the field in an effort to correct the “cortical-cortical connectivity” theory – that has been promoted.

I hope the two compartmental cortical-cortical connectivity theory will fade away, especially as publications like this and the IFCN position paper point in a different direction.

Jay

More Reading: Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback Science 1 November 1996:Vol. 274 no. 5288 pp. 771-774 DOI: 10.1126/science.274.5288.771

Movement during brain scans may lead to spurious patterns from Simons Foundation Autism Research Initiative (SFARI)